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Abstract During flood events, breaching of flood defen-

ces along a river system can have a significant reducing

effect on downstream water levels and flood risks. This

paper presents a Monte Carlo based flood risk framework

for policy decision making, which takes this retention

effect into account. The framework is developed to esti-

mate societal flood risk in terms of potential numbers of

fatalities and associated probabilities. It is tested on the

Rhine–Meuse delta system in the Netherlands, where

floods can be caused by high flows in the Rhine and Meuse

rivers and/or high sea water levels in the North Sea.

Importance sampling is applied in the Monte Carlo pro-

cedure to increase computational efficiency of the flood

risk computations. This paper focuses on the development

and testing of efficient importance sampling strategies for

the framework. The development of an efficient importance

sampling strategy for river deltas is more challenging than

for non-tidal rivers where only discharges are relevant,

because the relative influence of river discharge and sea

water level on flood levels differs from location to location.

As a consequence, sampling methods that are efficient and

accurate for one location may be inefficient for other

locations or, worse, may introduce errors in computed

design water levels. Nevertheless, in the case study

described in this paper the required simulation time was

reduced by a factor 100 after the introduction of an efficient

importance sampling method in the Monte Carlo frame-

work, while at the same time the accuracy of the Monte

Carlo estimates were improved.

Keywords Flood risk � Monte Carlo simulation �
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1 Introduction

An extensive system of flood defences has been con-

structed in the Netherlands to prevent regular floods from

the sea, major rivers and lakes. In this system, 53 dike ring

areas are distinguished, which are protected by a connected

system of dikes, dunes and hydraulic structures. For the

design and safety assessment of the flood defences, pro-

tection standards per dike ring area are defined in terms of

‘‘allowable flood frequencies’’. The present protection

standards vary from 10-3 to 10-4 per year. The foundation

of the flood protection standards was laid by Van Dantzig

(1956) and formally established in Delta Committee

(1958). The present protection standards are being recon-

sidered, following the advice of a newly established Delta

Committee (2008). The proposed protection standards for

safety assessments from 2017 onwards will be based on an

advanced cost-benefit analysis (Kind 2013) and on flood

fatality risk assessments. Fatality risks are considered from

the viewpoint of individuals and from the perspective of

society. The framework presented in this paper is devel-

oped to assess societal flood fatality risks. However, the

concept can also be used to quantify economic flood risks.

Societal flood fatality risk in the Netherlands is defined

as the probability of exceedance of a large number of flood

fatalities occurring in a single year. This risk is typically

quantified with FN-curves (Beckers et al. 2012; De Bruijn

et al. 2010; Evans and Verlander 1997; Vrijling et al.

1995), where N is the number of fatalities and F is the

associated frequency of exceedance. The FN-curve allows

for a differentiated evaluation of events with high
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probabilities and low numbers of fatalities versus events

with low probabilities and high numbers of fatalities. The

new protection standards for the Netherlands will be based

on the criterion that events with 10*N fatalities are 100

times less tolerable than events resulting in N fatalities. The

FN-curve provides the required information to evaluate

such criteria.

For the analysis of societal flood risk, the potential

influence of a dike breach on the flood risk of downstream

areas needs to be taken into account. Otherwise, scenarios

in which (almost) all dike ring areas are flooded may have

a significant effect on the derived FN-curve, even though

in reality these scenarios cannot occur. So far, this reten-

tion effect has not been taken into account in formal flood

risk assessments in the Netherlands. This paper describes

the set-up of the Monte Carlo based probabilistic frame-

work for societal flood risk analysis, which takes the

retention effects of dike breaches into account. The full

framework will only be described briefly, as the main

focus of the paper will be on a specific component: the

Monte Carlo sampling method. Computation results of the

framework and consequences for societal flood risk are

discussed in a separate paper (De Bruijn et al. 2014). The

main objective of the current paper is to construct a sam-

pling strategy that is efficient in terms of computation

times and at the same time provides sufficiently accurate

results. The method is applied on the Rhine–Meuse delta in

the Netherlands, but can be applied on other river deltas as

well.

2 Probabilistic risk modeling framework

2.1 Required capabilities

The modeling framework is developed with the aim to

derive societal flood risks for large river deltas. Further-

more, it is required that mitigating measures can be eval-

uated and also that areas that contribute most to the societal

flood risk can be identified. This leads to the following set

of requirements:

1. The framework has to be able to quantify the (societal)

flood risk of the delta as a whole and the individual

polders and floodplains;

2. The main components of the risk chain need to be

modeled explicitly, i.e. hydraulic loads, resistance and

breaching of flood defences, flooding of polders and

flood plains and evacuation response;

3. All relevant uncertainties need to be taken into

account;

4. The method has to be able to deal with the combined

influence of sea water level and river discharge;

5. The reduction of downstream water levels due to

breaching flood defences has to be quantified;

6. The method has to be applicable for systems with a

large number ([100) of dike sections and potential

breach locations;

7. For practical purposes the runtime should preferably be

less than 24 h on a standard personal computer.

2.2 Existing flood risk models in literature

The advantages of probabilistic flood risk methods over

more traditional deterministic methods are widely recog-

nized. The increase in computation power has given an

impulse to the development of various flood risk models in

which the entire ‘chain’ (sources, pathways, receptors) is

explicitly modelled, including all relevant uncertainties.

This section discusses a number of risk models from lit-

erature that are most relevant to our study.

The subject of downstream flood risk reduction due to

upstream breaching in the Netherlands was explored in a

research project as described by Van Mierlo et al. (2007)

and Courage et al. (2013). Courage et al. (2013) success-

fully quantified the potential effects of dike breaches on

downstream water levels and flood risks for a number of

dike rings in the Rhine–Meuse delta. In their simulations,

flood defences could breach due to the failure mechanisms

‘piping’ and ‘erosion of the inner slope due to wave

overtopping’. In case of a dike breach, a detailed 2D flood

simulation model was used to compute inundation depths

in the protected polders. As a result, their approach was

computationally time-consuming: a single flood simulation

took about 2–6 days on a standard issue 2 GHz Linux PC.

Apel et al. (2004) and (2009) also quantified the reten-

tion effects of breaching on downstream flood frequency

curves for stretches of the Lower Rhine River in Germany.

They used a Monte Carlo based approach in which

upstream discharges were sampled from the derived dis-

tribution function and subsequently routed through the

river stretch. In their model, flood defences could only

breach due to the failure mechanism ‘wave overtopping’.

In both studies the retention effects were demonstrated to

have significant influences on the flood frequency curves of

downstream locations, especially for events with high

return periods. Apel et al. (2009) therefore concluded that

their approach provides more realistic results than the tra-

ditional flood frequency approach in which the retention

effect is not taken into account. Vorogushyn et al. (2012)

extended the work of Apel et al. (2009) by quantifying

additional flood intensity indicators and introducing ‘pip-

ing and heave’ and ‘micro-instability’ as additional failure

mechanisms in their framework. Their method was applied

on a stretch of the Elbe River in Germany. Due to the
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relatively small storage of the Elbe floodplains, dike

breaching was not as influential on downstream flood levels

as it was for the lower Rhine in the studies of Apel et al.

(2004) and (2009).

Lamb et al. (2010) developed a statistical conditional

exceedance model to describe the joint probability of

extreme river flows or sea levels at multiple locations. The

joint probability method was developed by Keef et al.

(2009), based on the earlier works of Heffernan and Tawn

(2004). One of the main advantages of this model is that it

offers the possibility to handle dependencies of a large set of

locations with mutually correlated hydraulic loads. Wyncoll

and Gouldby (2013) linked the load model of Lamb et al.

(2010) to the consequence model of Gouldby et al. (2008) to

develop a fully risk based approach. Gouldby et al. (2008)

used fragility curves to describe the resistance of the flood

defences, a rapid flood model to derive flood depths and

standard depth-damage functions to quantify economic

losses. In the models of Lamb et al. (2010) and Wyncoll and

Gouldby (2013) the hydraulic loading conditions are

assumed to be fully dependent in terms of recurrence

interval (return period). Retention effects of breaching flood

defences were not taken into account.

Recently, Zhong et al. (2013) have implemented a

hydraulic load model for the Rhine–Meuse delta in a

Monte Carlo framework. They applied importance sam-

pling functions for the most relevant input variables to

speed up the convergence process. The importance sam-

pling procedure used normal distribution functions which

were centred around the values that lead to critical water

levels for design and safety assessment. They did not report

on the efficiency of this sampling strategy compared to

crude Monte Carlo, which is the focal point of our study.

Dawson and Hal (2006) developed a Monte Carlo based

flood risk method in which adaptive importance sampling

was applied to speed up the convergence of the sampling

process. Fragility curves were used to describe the reli-

ability of the flood defences of a combined coastal/fluvial

system in Towyn, North Wales. Five different failure

modes, including dune erosion, were taken into account

and represented by fragilty curves. A simplified two-

dimensional inundation model and standard damages

curves were used to compute flood damages for each

simulated event. Retention effects were not taken into

account. The output of their study consisted of flood risk

maps of the study area.

The papers described in this section provide valuable

flood risk modeling concepts that can be used for our

modeling purposes. However, to our best knowledge there

is no model available that has all modeling capabilities as

desired for our study (Sect. 2.1). Especially a system that

takes the retention effects of dike breaches into account for

a tidal river system with combined influences of sea water

levels and river discharges does not seem to be available.

Therefore a new modeling framework was required that

takes these issues into account.

2.3 Framework components

The objective of the probabilistic framework is to quantify

FN-curves for river deltas. The computation of FN curves

involves dealing with multiple sources of uncertainty. In

our framework, uncertainties in the hydraulic loads, the

resistance of the flood defences, the evacuation response

and the resulting number of flood fatalities from a breach

are all taken into account. The different sources of uncer-

tainty are described with probability distribution functions,

which are input for the framework. The framework consists

of the following components:

[i] Generation of synthetic events characterized by

load, strength and response variables;

[ii] Hydrodynamic modeling of the synthetic events;

and

[iii] Post-processing for deriving FN-curves.

The generation of synthetic events (component [i]) starts

with sampling of hydraulic load variables like river dis-

charge and sea water level from derived distribution func-

tions. Subsequently, the resistance of the flood defences is

sampled from fragility curves for potential breach locations.

Breaching of flood defences can potentially occur anywhere

in the system. The framework, however, requires a finite set

of potential breach locations. These breach locations are

selected in such a way that all relevant potential flood

scenarios are captured. For this purpose, the system of flood

defences is subdivided into several stretches, based on the

criterion that flood consequences are approximately the

same for breaches at any location within a single stretch.

For each stretch, a single representative potential breach

location was selected. For each potential breach location,

fragility curves are derived for all relevant failure mecha-

nisms based on characteristics of the flood defences. Three

failure mechanisms are considered that are known to be

dominant for riverine flood defences: ‘‘erosion of the inner

slope’’, ‘‘piping’’ and ‘‘slope instability’’. This means for

each simulated event and each location, three breaching

levels are sampled from the fragility curves, representing

the water levels at which the flood defence will breach due

to the corresponding failure mechanism. The lowest of the

three breaching levels is the water level at which the flood

defence will breach. The final step in component [i] consists

of sampling a success rate of the evacuation response,

which is used later on to determine the expected number of

casualties in a flood event.
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Each event is simulated with a hydrodynamic model

(component [ii]). The sampled hydraulic load variables like

river discharge and sea water level serve as boundary con-

ditions for this model. The sampled breaching levels from

the fragility curves are also input to the hydrodynamic

model. At each simulation time step, locations are identified

for which the water level exceeds the breaching level. For

these locations the formation of a breach is simulated and

water is abstracted from the river. This leads to a reduction

of downstream water levels as well as inundation of the

protected polders. As such, the framework is able to take the

reducing effect of breaching on downstream water levels

and flood probabilities into account. More details on the

hydrodynamic model simulation are provided in Sect. 4.3.

In the post-processing procedure (component [iii]), the

expected number of fatalities in the simulated events is

derived from indicators like the flooded area, the number of

inhabitants and the evacuation success rate. These numbers

are used to derive FN-curves that show frequencies of

exceedance of (large) numbers of flood fatalities. More

details on the computation of the FN curves are provided in

the following section.

2.4 Probabilistic computation method

To estimate the probability of failure of complex systems,

probabilistic computation methods are required. In such

computations, generally the probability is computed that

the load (S) of the systems exceeds the strength, or resis-

tance (R). For food defences, the load typically consists of

a combination of water levels and waves and in some cases

currents. The resistance depends on the geometry of the

flood defence and soil characteristics. For convenience, a

limit state function Z is defined as follows:

Z ¼ R� S ð1Þ

With this definition, Z\ 0 refers to ‘‘failure’’ and Z C 0

to the opposite, i.e. ‘‘no failure’’. This means the failure

probability is equal to: P[Z\ 0]. This definition of func-

tion Z can also be used to quantify exceedance probabilities

of e.g. a threshold water level w*. In that case the ‘‘load’’,

S, is taken equal to the actual water level, w, and the

‘‘resistance’’, R, is taken equal to w*. A value of Z\ 0 then

corresponds to the situation that w exceeds w*, so again

P[Z\ 0] is the probability that needs to be quantified.

The limit state function, Z, is a function of a number of

random variables representing both load and resistance

variables. This means Z is a random variable as well. The

probability of failure can be written as follows:

Pf ¼ P Z\0½ � ¼

Z

Z xð Þ\0

fX xð Þ dx ð2Þ

where x is the vector of variables: x = (x1,…xn) and fX is

the joint probability density function of x. To evaluate Z(x),

often numerical simulation models are required. This

means Eq. (2) is generally too complex to evaluate in an

exact, analytical way. Therefore, probabilistic techniques

are required to provide an estimate of the failure proba-

bility. There are different probabilistic methods available,

each with its advantages and disadvantages. Extensive

overviews are given in Ditlevsen and Madsen (1996) and

Melchers (2002). The ‘‘best’’ choice of the probabilistic

method depends on the problem under consideration.

Grooteman (2011) identifies the following three selection

criteria on which the choice of a computational method

should be based: accuracy, efficiency (i.e. computation

time) and robustness.

For the existing statutory safety assessment procedure of

flood defences in the Rhine–Meuse delta, numerical inte-

gration is used to determine probabilities of hydraulic loads

(Geerse, 2005). Numerical integration scores high on

robustness and accuracy, if grid cells are chosen suffi-

ciently small. However, numerical integration becomes

very time-consuming if more than just a few random

variables are involved. For the probabilistic model of the

statutory safety assessment this poses no problem as it only

considers hydraulic loads in order to determine design

water levels. The number of random variables is therefore

limited. However, in our study the resistance of the flood

defences is also considered and the number of random

variables is well over a hundred. This makes the applica-

tion of numerical integration infeasible.

As a potential alternative, FORM (Rackwitz, and

Fiessler, 1978) is known to be computationally efficient.

This is the reason why this is the preferred method in the

computational software that is being developed for the

subsequent statutory safety assessment of flood defences in

the Netherlands (Den Heijer and Diermanse, 2012). The

disadvantage of FORM is that it relies on an iterative

procedure which sometimes does not converge. Further-

more, FORM relies on linearization of the Z-function,

which means errors are introduced if the actual Z-function

is highly non-linear. For application in the framework of

the current study, FORM has a further disadvantage that it

computes the failure probability (or exceedance probabil-

ity) at a single location. Since the framework needs to be

applicable for systems with large numbers of potential

breach locations, the efficiency gain of FORM is easily lost

in this case.

Monte Carlo methods do not have the disadvantages of

FORM and numerical integration as described above. The

required computation time does not increase with increas-

ing number of variables and the failure analysis of multiple
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locations can be efficiently combined. For this reason it

was decided to implement a Monte Carlo based method in

the framework. For Monte Carlo methods, the main chal-

lenge is provide accurate estimates for cases in which the

probability of failure is very small. In those cases, crude

Monte Carlo sampling requires a large number of Z-func-

tion evaluations for an accurate estimate of the failure

probability. If Z-function evaluations are very time-con-

suming, the number of evaluations will have to be limited

from a practical point of view. This will automatically be at

the expense of the accuracy of the estimate. Fortunately,

the efficiency of Monte Carlo simulation can be enhanced

through application of advanced sampling techniques like

Latin hypercube sampling (Georgiou 2009; HSU et al.

2011; Olsson et al. 2003; Owen 1994; Ye 1998), direc-

tional sampling (Bjerager 1988; Ditlevsen et al. 1990;

Grooteman, 2011; Melchers 2002), stratified sampling

(May et al. 2010; Keskintürk and Er 2007; Christofides

2003) or importance sampling (Engelund and Rackwitz

1993; Koopman et al. 2009; Sezer 2009; Yuan and Dru-

zdzel 2006). A further efficiency gain may be achieved if

these methods are combined with adaptive response sur-

face techniques (Liu et al. 2010; Steenackers et al. 2009

Allaix and Carbone, 2011) which help explore the failure

space, Z(x)\ 0, at a low computational cost.

For most practical problems, the advanced sampling

techniques reduce the required number of Z-function

evaluations in comparison with the crude Monte Carlo

approach. The efficiency gain of Latin Hypercube sampling

is relatively small compared to the other methods in cases

where extreme events are relevant, and therefore not

appropriate for our purpose. The efficiency of directional

sampling decreases if a large number of random variables

are involved (Waarts 2000). Furthermore, directional

sampling is less efficient in case of a large number of

objective functions that need to be evaluated individually.

The large number of potential breach locations considered

in the current study, brings with it an even larger set of

random variables and objective functions in the hydraulic

load model, which is why directional sampling is not the

preferred option. Stratified sampling and importance sam-

pling are anticipated to be the most efficient Monte Carlo

techniques for our framework. We chose to apply impor-

tance sampling as it was considered the most practical of

the two methods to implement and apply in the test pro-

cedure as described in Sect. 4.4

Application of importance sampling means the actual

multivariate distribution function, F, of the set, x, of

random variables is replaced in the sampling procedure by

an alternative distribution function, H, in order to increase

the probability of sampling events which are most relevant

for the flood risk in the study area. The changes in

sampling probabilities need to be corrected for in the

Monte Carlo probability estimate by a factor that is equal

to c = f(x)/h(x), where f and h are the density functions

corresponding to F and H. This correction factor c is

determined for each sample of x. The estimated proba-

bility of exceedance of a threshold number of N* fatalities

is then equal to:

P N[N�½ � ¼
1

n

X

n

i¼1

1 Ni [N�½ �ci ð3Þ

In which n is the number of simulated events, P is the

exceedance probability per event, N is the number of

fatalities in an event, N* is a possible realization of N, Ni is

the number of fatalities in event i, 1[..] is an indicator

function which is equal to 1 if Ni[N* and 0 otherwise and

ci is the correction factor for importance sampling for event

i. The FN-curve is derived through application of Eq. (3)

for a range of values of N*.

The Monte Carlo simulation procedure in our frame-

work uses random variables to model the hydraulic load

(river discharge, sea water level, possible failure of a bar-

rier), the resistance of flood defences (fragility curves for

potential breach locations) and the rate of success of the

evacuation response. In the method, n years are simulated,

where n can be selected by the user. The choice of n is

generally based on the trade-off between computation time

and desired accuracy. The simulated years do not represent

a series of n subsequent years, but n possible realizations of

a reference year. This is a relevant distinction, because in

the first case, the sampling method for resistance variables

needs to take the high correlations between samples of

subsequent years into account, whereas in the second case

the samples for each simulated year can be generated

independently.

For each simulated year, two synthetic events are con-

sidered: (i) the event in which the annual maximum river

discharge occurs and (ii) the event in which the annual

maximum sea water level occurs. The motivation is that in

a river delta both types of events can cause floods and they

generally do not coincide. This means in total 2n synthetic

events are generated and simulated according to steps [i]

and [ii] of Sect. 2.3. In this approach, the estimated annual

probability of exceedance of a threshold number of N*

fatalities is equal to:

P N[N�½ � ¼
1

n

X

2n

i¼1

1 Ni [N�½ �ci ð4Þ

In Eq. (4) P refers to the annual exceedance probability,

whereas in Eq. (3) P referred to the exceedance probability

per event. This explains the number ‘2’ in Eq. (4)which is

absent in Eq. (3): there are two simulated events per year.
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3 Criteria for selecting importance sampling strategies

The main purpose of this paper is to establish an efficient

sampling strategy for the framework as described in the

previous section. The optimal strategy usually depends on

the case study area. In other words: no sampling strategy

can be expected to be efficient for all river deltas in the

world. However, our proposed approach to derive the

sampling strategy is generic. The method is to iteratively

develop and apply various sampling strategies and to test

the efficiency. Sampling strategies will be formulated

based on test results from previous iterations.

One of the possible approaches to ‘learn’ from previous

simulation results is to use adaptive sampling schemes (e.g.

Steenackers et al. 2009; Allaix and Carbone 2011). Dawson

and Hal (2006) applied such an approach in a flood risk

analysis of a combined coastal/fluvial system in Towyn,

North Wales. In their method, the sampling density func-

tion h(x) is iteratively adapted in such a way that events

that were found to contribute most to the flood risk in

earlier iterations are given higher sampling densities in

subsequent iterations. They demonstrated that such an

approach can significantly speed up the convergence of the

Monte Carlo simulation procedure. Nevertheless, such an

approach was not adopted in our study. The main reason is

that for our decision making process not only the flood risk

of the entire delta area is required, but also the flood risk of

all the individual polder areas that are protected by flood

defences. An approach that optimizes the sampling scheme

for the flood risk of the delta as a whole may not provide

reliable estimates for each individual polder.

For this reason a ‘learn-by-doing’ approach was fol-

lowed in which sampling schemes are judged based on

their ability to provide reliable Monte Carlo estimates at

each location in the delta within an acceptable simulation

time. This means the sampling scheme needs to be effi-

cient, accurate and robust for all locations. As stated

before, importance sampling can increase the efficiency of

a Monte Carlo simulation by sampling the vector, x, of

random variables from an alternative distribution function,

H(x), instead of the actual distribution function, F(x).

Function H(x) should be chosen in such a way that the

required number of samples to obtain accurate results is

reduced as much as possible. The accuracy of the sampling

procedure can be verified with the following two criteria

for the Monte Carlo estimate:

1. the bias should be equal to 0;

2. the standard deviation should be lower than an accept-

able threshold.

The first criterion implies that the Monte Carlo estimate

(Eq. (4)) should converge to the correct result if the number

of samples, n, goes to infinity. More formally, this criterion

can be described as follows: The bias is equal to zero if for

any combination of (small) positive values e1 and e2 there

is a value n* for which the following holds if the number of

samples, n, is higher than n*:

P e[ e1½ �\e2 ð5Þ

In which e is the error in the Monte Carlo estimate. A bias

in the estimate will be introduced if, and only if, there are

events that result in failure which are awarded a probability

of 0 in the importance sampling procedure. The second

criterion above can be verified by carrying out the Monte

Carlo experiment multiple (Ms) times, and to subsequently

verify if the standard deviation of the resulting Ms estimates

is below the acceptable threshold. Note that the choice of the

acceptable threshold is subjective. The standard deviation

can always be kept as low as possible by increasing the

number of samples, n. However, the purpose of importance

sampling is to keep this number as low as possible. So, if we

assume the number of n to be fixed, notorious contributors to

high standard deviations are potential realisations, x, for

which Z(x)\ 0 and f(x)/h(x) � 1. These are events that

contribute to failure, but have a relatively small probability

of being sampled in the importance sampling procedure.

However, if they are sampled, they have a relatively large

contribution to the Monte Carlo estimator because the factor

c = f(x)/h(x) is large. Such realisations of x can cause rel-

atively large differences in the successive Monte Carlo

estimators and therefore contribute strongly to the standard

deviation. This should therefore be avoided, which means

the events that contribute to the flood risk in the area should

never be awarded a sampling probability that is significantly

lower than the actual probability.

The bias and standard deviation are used in the

remainder of this paper as criteria to test the accuracy of

various importance sampling strategies. Our main objective

is to construct a sampling function, H(x), that is efficient

(i.e. low number of hydraulic model simulations) and

sufficiently accurate (i.e. no bias and acceptably small

standard deviations) for all considered locations in the area.

Different sampling strategies are tested and mutually

compared in terms of bias and standard deviation, in order

to obtain an ‘‘optimal’’ sampling strategy.

4 Case study

4.1 Area

The Rhine–Meuse delta in the Netherlands (see Fig. 1) is a

densely populated region that includes the cities of Rot-

terdam, Utrecht, Arnhem, Nijmegen and Dordrecht. The

area is of high economic value, in particular the port of

Rotterdam. The protection standards for this region are
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among the highest in the world: the flood defenses must be

able to withstand hydraulic loads associated with a return

period of 10,000 years. With respect to the hydraulic

characteristics, the area can be subdivided into three

regions: a tidal region, where high water levels are caused

by high sea water levels; a non-tidal region, where high

water levels are caused by high river discharges and a

transitional region, where high water levels can be caused

by both high sea water levels and high river discharges.

The tidal and transitional regions are protected from

high sea water levels by the Maeslant storm surge barrier,

near location Maasmond (see Fig. 1). This barrier closes

when the water level at Rotterdam is expected to exceed

the level of NAP ? 3 m,1 or if the water level at Dordrecht

is expected to exceed a water level of NAP ? 2.9 m. A

closure request for the barrier due to high storm surges is

expected to occur on average approximately once every

10 years. There is an estimated probability of 1 % that the

barrier fails to close upon request.

Flood defence breaches can occur at any location in the

area and consequences in terms of numbers of fatalities can

vary strongly from location to location. The framework,

however, requires a finite set of potential breach locations.

The potential breach locations of the model are selected in

such a way that all relevant potential flood scenarios are

captured by the modelling framework. For this purpose, the

system of flood defences is subdivided into several stret-

ches, based on the criterion that flood consequences are

approximately the same for breaches at any location within

a single stretch. In total 171 different stretches were

identified by De Bruijn and Van der Doef (2011), varying

in length from 400 m to 34 km. Figure 1 shows the cor-

responding 171 representative breach locations.

4.2 Statistics of hydraulic loads

High water levels in the Rhine–Meuse delta are mainly

determined by the discharge of the River Rhine at upstream

boundary Lobith, the discharge of the river Meuse at

upstream boundary Lith, the sea water level at downstream

boundary Maasmond and the functioning of the barrier

near Maasmond, which may fail to close upon request. As

the focus of the study is on flood risk, statistics of high

river discharges and high sea water levels are most rele-

vant. Statistical distribution functions for high rivers dis-

charges and sea water levels have been adopted as much as

possible from the probabilistic model that was developed to

derive design water levels for the formal safety assessment

Fig. 1 Model area and potential breach locations (red dots)

1 NAP = Nieuw Amsterdams Peil, the Dutch reference level
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of flood defences in the Rhine–Meuse delta (see e.g.

Geerse 2005 for a description of that model). Statistics of

extreme river discharges and sea water levels have been

derived by fitting extreme value distribution functions

through observed annual maximum water levels and peaks-

over-threshold series. Sea water level statistics are descri-

bed by a conditional Weibull distribution:

P M�mjm[xð Þ ¼ 1� exp x=rð Þn� m=rð Þn
h i

; ð6Þ

whereM is the annual maximum sea water level, relative to

NAP, m a potential realization of M and x, r, and n are the

location, scale and shape parameter respectively. Exceed-

ance frequencies of high sea water levels can be derived by

multiplying the probabilities that follow from equation (6)

with the frequency of exceedance, k, of threshold x. The

value of k is determined by counting the number of peaks

above the threshold and dividing by the number of years of

record. For location Maasmond, x = 1.97, k = 7.24,

n = 0.57 and r = 0.0157.

Probabilities of high river discharges in the Rhine and

Meuse are described with a Gumbel distribution:

P Q\qð Þ ¼ exp � exp �
q� b

a

� �� �

; ð7Þ

where Q is the annual maximum peak discharge, q is a

potential realization of Q and a and b are the two param-

eters of the distribution function, with a = 1,316 m3/s,

b = 6,612 m3/s for the Rhine River at Lobith and

a = 342 m3/s, b = 1,190 m3/s for the Meuse River at Lith.

These statistical distribution functions quantify proba-

bilities for the high range of peak values. However, high

river discharges are likely to occur jointly with ‘normal’

sea water level conditions and vice versa, so statistics of

‘daily’ conditions are also relevant. To describe probabil-

ities of the whole range of conditions, histograms were

derived from all observed daily discharges in a period of

approximately 100 years of measurements. Similarly, his-

tograms of tidal peaks were derived from all observed tidal

peaks in a period of approximately 100 years. The histo-

grams are used directly as input for the sampling proce-

dure, so no curve fitting was applied. The probability

distribution for the Maeslant barrier is binominal: there is a

1 % probability that the barrier fails to close upon request,

and therefore a 99 % probability that the barrier closes

upon request. High water events in the Rhine and Meuse

rivers often occur simultaneously. This means discharges

of these rivers are correlated and this is taken into account

in the modeling framework. However, in the current paper

this correlation is not relevant as the Rhine is the only river

we focus on to determine our optimal importance sampling

scheme.

The statistical distribution functions of discharges and

sea water levels refer to peak values, while the hydrody-

namic simulation model requires time series as input. To

describe the temporal evolution of the river discharge, a

normalised hydrograph is used, i.e. a dimensionless hyd-

rograph with a peak value equal to 1. For each simulated

event, the normalized hydrograph is multiplied by the

sampled peak discharge to form a discharge time series,

which is used as input of the hydrodynamic simulation

model. The normalised hydrograph is based on average

durations of threshold exceedances, as observed during

high water events on the Rhine and Meuse rivers. The

hydrograph of the sea water level is a combination of a

standardised surge hydrograph and average tidal condi-

tions. The standardised surge hydrograph is also based on

averages of observed high storm surge events. The stand-

ardised hydrographs for storm surge and river discharge are

applied in each simulated event. The following assump-

tions are made with regard to ‘‘timing’’:

• The peak of the Rhine discharge at Lobith occurs at the

same time as the peak of the Meuse discharge at Lith.

• The peak of the sea water level occurs 2 days after the

peak of the river discharge. This means the peaks arrive

approximately at the same time in the transitional area,

i.e. the area that is influenced by both river discharges

and sea water level.

Events with high discharges in the Rhine and Meuse

rivers may last several weeks. For long duration events, the

probability that the sea water level exceeds a given high

threshold at some stage during the event is higher than for

short duration events. This is especially relevant for the

transitional area, where water levels are influenced by both

river discharges and sea water levels. In the probabilistic

model for the statutory safety assessment of flood defences,

the total duration of a river induced flood event in the Rhine

river is assumed to be in the order of 30 days (Geerse 2005).

This duration includes the rising and falling limb of the

hydrograph, which means high river discharges only occur

during a smaller sub-period. In our model, the duration of

this sub-period is equal to s tidal periods and starts at s/2

tidal periods before the peak discharge and ends at s/2 tidal

periods after the peak discharge. The value of s is chosen to

be 12 tidal periods, i.e. about 6.5 days. The value of s is

applied in the sampling procedure of the (peak) sea water

level. The probability distribution function, FM(m), for the

peak sea water level is available for the tidal period:

FM mð Þ ¼ P M\m½ � ð8Þ

This means the function FM(m) describes the probability

that the maximum sea water level during a single tidal

period is less than or equal to m. In the Monte Carlo
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procedure, the maximum sea water level of a period of s

tidal periods will be sampled. This value has the following

distribution function:

F�
M mð Þ ¼ P M\m½ �s¼ FM mð Þ

� �s
ð9Þ

Note that this formula is based on the assumption of

independence between subsequent tidal peaks. Equation (9)

shows the assumed duration s influences the distribution

function from which the peak sea water level is sampled.

An increase in the value of s increases the probability of

higher peak sea water levels being sampled. This is exactly

the duration effect that needed to be incorporated in the

approach: the longer the duration of a high discharge event,

the higher the probability that the sea water level exceeds a

given high threshold at some stage during this event.

4.3 Hydrodynamic simulations

The Sobek hydrodynamic model (see e.g. Stelling and

Verwey 2005) was used to compute water levels at all

potential breach locations of Fig. 1, for the selected com-

binations of river discharges, sea water levels and barrier

states. The formation and consequences of breaches are

also simulated in this hydrodynamic model. Breaches occur

if the river water level at a location exceeds the maximum

water level that a dike section can withstand, as sampled

from the derived fragility curves. The process of breaching

is not further considered in the remainder of this paper,

even though it is highly relevant for the estimated societal

flood risk. This is because the focus of the paper is on the

development of efficient Monte Carlo importance sampling

techniques and it is most practical to test these on the

relatively simplified case in which it is assumed no brea-

ches can occur. This will be further explained in Sect. 4.4.

For more information on the hydrodynamic modeling of

breaches and resulting societal flood risks, the interested

reader is referred to De Bruijn et al. 2014.

4.4 Test set for selecting importance sampling

strategies

Section 3 describes criteria for the selection of efficient

sampling schemes. One of the criteria is the standard

deviation of the Monte Carlo estimator. In order to quantify

this standard deviation, the Monte Carlo simulation needs

to be repeated multiple times with different (random)

seeds. In order to prevent having to carry out millions of

time-consuming model simulations, the tests for the

selection of sampling strategies were only carried out for

the hydraulic loads, i.e. not for breaches and flood conse-

quences. To construct the test procedure, hydraulic simu-

lations were carried out for combinations of seven sea

water levels, 11 river discharges and 2 barrier situations, so

in total 7 9 11 9 2 = 154 simulations. The simulated sea

water levels and river discharges cover the complete range

of events that are relevant for flood risk assessments. In the

simulations, dike breaching was not modelled. For this

particular test, the river discharges of the Rhine and Meuse

were assumed to be fully correlated, to further simplify the

test procedure. The simulated maximum water levels at the

171 potential breach locations, as obtained from the 154

simulations, served as a lookup table for the Monte Carlo

test simulations. In this way, water levels at the 171

potential breach locations can be derived for all potential

realisations of the random load variables with negligible

computation time.

Another advantage of the relatively low number of

random variables of the test case is that results of the

Monte Carlo simulations can be compared with the

‘‘exact’’ results as computed with numerical integration.

The computations with numerical integration were carried

out on a very fine grid consisting of 400,000 combinations

of river discharges and sea water levels. This grid was

applied for both barrier states, i.e. ‘functioning’ and

‘malfunctioning’. T-year water levels were derived for all

potential breach locations for a range of values of T. The

computed T-year water levels of the numerical integration

procedure were compared with analytical results for loca-

tions in the non-tidal area, which showed that the error in

water levels as estimated with the numerical integration

procedure were less than two millimeters. This is consid-

ered small enough to serve as the reference for the detec-

tion of errors (bias) in the Monte Carlo simulations.

5 Results and analysis

5.1 Sampling strategies for the non-tidal area

In total six different sampling strategies were tested. The

strategies are labeled ISS1… ISS6 and the associated dis-

tribution functions and parameters are summarized in

Table 1. The first tests for importance sampling strategies

were only carried out for locations in the non-tidal area.

For these locations, the river discharge is the only random

variable of interest, i.e. the influence of the sea water level

and barrier state is negligible. This means the most efficient

sampling strategies for these locations only need to focus

on high river discharges. The following two importance

sampling strategies were tested:

• ISS1: Sampling from the highest quantiles of river

discharges only, with sampling probability densities

proportional to actual probability densities;

• ISS2: Uniform sampling of river discharges.
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In formula, this means the following sampling density

functions are applied on the variable discharge:

h1 xð Þ ¼
0 ; x� xT
f xð Þ

1� F xTð Þ
; x[ xT

8

<

:

ð10Þ

h2 xð Þ ¼
0 ; x 62 xL; xU½ �

1

xU � xL
; x 2 xL; xU½ �

8

<

:

ð11Þ

In which xT is the threshold discharge above which

discharges are sampled in strategy 1 (ISS1), xL and xU are

the lower and upper bounds of the interval from which

discharges are sampled in strategy 2 (ISS2) and f(x) is the

actual density function of the discharge. The generic var-

iable name ‘x’ is used in the equations above because these

sampling functions will be applied on other random vari-

ables later on as well. In strategy 1, the sampling density

for discharges above threshold xT is proportional to the

original density function f(x), whereas in strategy 2 the

probability density is uniform for all discharges in the

interval [xL, xU]. Threshold xT was taken equal to the

100-year discharge (&12.700 m3/s for the Rhine at Lob-

ith), xL and xU are taken equal to 10,000 m3/s and

24,000 m3/s respectively. These bounds were carefully

chosen make sure that [a] the interval is not too large and

hence the sampling method inefficient and [b] the interval

is large enough to have all discharges included that are

relevant for flood risk in the non-tidal area.

Monte Carlo simulations were carried out 100 times for

both strategies to obtain the standard deviation of com-

puted T-year water levels. Furthermore, the mean value of

the T-year water level over the 100 simulations was com-

pared with the ‘‘exact’’ results from numerical integration

to quantify the (potential) bias that may be introduced by

importance sampling methods. Figure 2 shows the result-

ing bias and standard deviation of the 100, 1,000 and

10,000-year water level of the following sampling strate-

gies: [a] crude Monte Carlo with 100,000 simulated years,

[b] crude Monte Carlo with 1,000 simulated years [c] ISS1

with 1,000 simulated years and [d] ISS2 with 1,000 sim-

ulated years. The subplots on the left show the bias and the

subplots on the right show the standard deviation for esti-

mated water levels at 7 locations in the non-tidal area with

return periods of 100 years (top panel), 1,000 years (centre

panel) and 10,000 years (lower panel). These return peri-

ods cover the range that is most relevant for flood risk

estimates in the area.

It is no surprise that the crude Monte Carlo results for

n = 100,000 are more accurate than the crude Monte Carlo

results for n = 1,000. For n = 1,000 the absolute value of

the bias is larger and the standard deviation is substantially

larger. Furthermore, the 10,000 year water level could not

be obtained with n = 1,000 samples, as it requires at least

10,000 samples to quantify this water level without the

(undesired) use of extrapolation techniques. The positive

value of the bias as observed in the left panel subplots may

require some further explanation. Formally, the bias as

defined in Sect. 3 is equal to 0 for crude Monte Carlo

sampling. In other words: the error in the Monte Carlo

estimate reduces to 0 if n goes to infinity. The bias in Fig. 2

for the crude Monte Carlo methods is therefore caused by

the fact that a limited set of samples is used. Increasing the

number of samples will decrease the bias, which is dem-

onstrated by the fact that the bias for n = 100,000 is much

smaller than for n = 1,000.

Since errors of 0.1 m or more in estimated water levels

are considered unacceptable for flood risk analysis in this

area, n = 1,000 simulated years is not sufficient for crude

Monte Carlo simulation, whereas n = 100,000 leads to an

acceptable bias and standard deviation. However, it would

be unpractical to carry out 100,000 hydraulic model sim-

ulations whereas n = 1,000 would be acceptable. This is

Table 1 Overview of sampling strategies for the annual maximum

discharge of the Rhine river at Lobith (QR_AM), the daily maximum

discharge of the Rhine river at Lobith (QR_D), the annual maximum

sea water level at Maasmond (SWL_AM), the tidal peak of the sea

water level at Maasmond (SWL_T) and the functioning of the barrier

at Maasmond (B). Functions f and h1,…,h4 are sampling density

functions as defined in the bottom part of the Table, the values

between brackets are the corresponding function parameters

No. QR_AM QR_D SWL_AM SWL_T B

1 h1 (12,700) h1 (7,500) f f f

2 h2 (10,000; 24,000) h2 (10,000; 24,000) f f f

3 h2 (10,000; 24,000) h2 (10,000; 24,000) h2 (2; 7) h2 (1.2; 6) f

4 h2 (6,000; 24,000) h2 (500; 14,000) h2 (2; 7) h2 (1.2; 6) f

5 h2 (6,000; 24,000) h2 (500; 14,000) h2 (2; 7) h3 (1.2;2.5;6) f

6 h2 (6,000; 24,000) h2 (500; 14,000) h2 (2; 7) h3 (1.2;2.5;6) h4 (0.1)

Importance sampling functions: f, original density function (no importance sampling); h1, scaling factor in probability; parameter xT, see Eq. 10;

h2, uniform sampling; parameters xL and xU, see Eq. 11; h3, split distribution function; parameters x1, x2, x3, see Eq. 12; h4, binomial distribution

function; parameter p1, see Eq. 13
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the reason why importance sampling is required in our

probabilistic framework. Figure 2 shows that both impor-

tance sampling strategies lead to acceptable results, i.e.

errors well below 0.1 m, for n = 1,000 simulated years.

Results of strategy 1 are nearly the same as the crude

Monte Carlo results with n = 100,000 years. The reason is

that for the analysis of events with return peri-

ods[= 100 years the two methods are essentially the

same, since strategy 1 [a] only samples from discharges

with return period[ 100 years and [b] was applied with a

factor 100 lower number of samples. So with ISS1, similar

results can be obtained as crude Monte Carlo with a factor

100 lower computation time. Note that this is only the case

for return values of 100 years and higher, for lower return

periods this importance sampling strategy will not provide

results. This is no problem if only the extreme events are

relevant, but this is not always the case as will be dem-

onstrated in the next section.

Figure 2 shows that strategy 2 provides even more

accurate results than strategy 1 and the crude Monte Carlo

simulations, especially for the 1,000-year and 10,000-year

water level. The reason is that in strategy 2 the extremely

high discharges up to 24,000 m3/s have a significantly

higher probability of being sampled in comparison with

strategy 1 and crude Monte Carlo sampling. This gives the

method the potential to provide more reliable estimates for

particularly the high return periods.

5.2 Sampling strategies for all locations

So far, the analysis has focused on locations for which the

river discharge is the only relevant variable. For these

locations, sampling strategy 2 turned out to be very effi-

cient. However, this success is partly explained by the fact

that this sampling strategy only focuses on river discharges.

For sea water dominated locations this strategy is less

Fig. 2 Bias (left) and standard

deviation (right) for estimated

water levels with return periods

of 100 years (top panel),

1,000 years (centre panel) and

10,000 years (lower panel);

comparison of results of

importance sampling strategies

1 and 2 with 1,000 simulated

years and crude MC with 1,000

and 100,000 simulated years.

All locations are discharge

dominated
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efficient, as can be seen from Fig. 3 (red open circles). This

Figure shows results for all 171 potential breach locations.

Locations are ordered based on the longitudinal coordinate,

which means sea-dominated locations (tidal area) are on

the left and river dominated locations (non-tidal area) are

on the right. Clearly, the bias with sampling strategy 2 is

unacceptably large for locations in the tidal area.

In order to develop a sampling strategy that provides

reliable results for all locations, using a limited set of 1,000

simulated years, importance sampling on sea water levels is

required as well. Therefore, a uniform sampling strategy

(ISS3) is adopted for the sea water level, with bounds

2 m ? NAP and 7 m ? NAP. This is done for event type

(ii), i.e. for events with the annual maximum sea water

level. For event type (i) (annual maximum discharge with

co-inciding sea water level) the bounds 1.2 m ? NAP and

6 m ? NAP are adopted (see Table 1 for the details of the

sampling strategies). For river discharges, strategy 3 uses

the same sampling distributions as strategy 2.

Figure 3 compares the results for strategies 2 and 3. In

general, strategy 3 results in a reduction of standard devi-

ations in comparison with strategy 2 for locations in the

tidal area (location id’s 1–100), but the bias for these

locations is still large. Furthermore, it can be seen that for

locations in the non-tidal area (location id’s 100–171) the

standard deviation for strategy 3 is higher than for strategy

2, even though the same sampling strategies for river dis-

charges were applied. This is due to the fact that for these

locations the lower sea water levels are more relevant than

high sea water levels and strategy 3 shifts the sampling

density to the higher sea water levels. This demonstrates

that a sampling strategy can increase the accuracy for one

location and at the same time decrease the accuracy for

another location. This is the reason why importance

Fig. 3 Bias (left) and standard

deviation (right) for estimated

water levels with return periods

of 100 years (top panel),

1,000 years (centre panel) and

10,000 years (lower panel);

comparison of results of

importance sampling strategies

2, 3 and 4 with 1,000 simulated

years

Stoch Environ Res Risk Assess

123



sampling in a delta like the Rhine–Meuse delta is more

challenging than for rivers where only discharges are

relevant.

Another noteworthy aspect of Fig. 3 is that the bias for

locations in the tidal area (id\ 100) is large for sampling

strategy 3. This is due to the fact that the lower bound of

the uniform sampling strategy for the river discharge is

relatively high (10,000 m3/s). Such a high value is efficient

for river dominated locations because for these locations

only high discharges will result in relevant high water

levels. However, for locations in the tidal area, low and

moderate discharges are relevant as well, because high sea

water levels usually coincide with low/moderate river

discharges. Ignoring these events in the sampling scheme

clearly results in an underestimation of design water levels

for these locations. Therefore, in a subsequent sampling

strategy 4 (ISS4) the lower bounds of the uniform sampling

distributions for river discharges where reduced to

6,000 m3/s for event type (i), i.e. the events with annual

maximum river discharges, and to 500 m3/s for event type

(ii), i.e. the events with annual maximum sea water levels.

Figure 3 demonstrates that this has the desired effect on the

bias, which is close to zero for all locations for sampling

strategy 4.

With the bias reduced to near zero, the next objective is

to adapt the sampling strategy in such a way that the

standard deviation is further reduced, without simultaneous

increase of the bias. The first point of consideration is the

set of river dominated locations (id’s[ 100), for which the

standard deviation of the 10,000-year water level is close to

0.1 m. Figure 3 shows that these relatively large numbers

arose when sampling strategy 3 was introduced, in sam-

pling strategy 2 these numbers were much smaller. In

sampling strategy 3, importance sampling for sea water

levels was introduced, which resulted in a significant

reduction of standard deviations for locations in the tidal

area. However, this was at the expense of the standard

deviations for discharge dominated locations. For dis-

charge dominated locations, events with high discharges in

combination with moderate to low sea water levels are

relevant. The introduction of importance sampling for high

sea water levels caused a decrease in the number of sam-

ples of moderate/low sea water levels, i.e. a decrease in the

number of samples that are relevant for discharge domi-

nated locations. This gave rise to the increase in the stan-

dard deviation of the Monte Carlo estimate for river

dominated locations. In order to decrease the standard

deviation of these locations, the obvious way is to increase

the probability of sampling lower sea water levels. The

problem is that this will be at the expense of the accuracy

for sea water level dominated locations, which is the reason

why sampling strategy 3 was introduced in the first place.

In order to obtain accurate probability estimates for both

discharge dominated and sea water level dominated loca-

tions, the sampling strategy for sea water level therefore

has to be a compromise between the importance sampling

function on one hand and the original density function (i.e.

no importance sampling) on the other hand. This com-

promise is reached by dividing the relevant range of sea

water levels into two intervals [x1, x2] and [x2, x3], with

x1\ x2\ x3. The first interval represents the low/moderate

sea water levels and the second interval represents the high/

extreme sea water levels. Since both intervals are relevant

for the flood risk in the area, we decided to give equal

probability weights to both. In other words: each individual

sea water level sample has a 0.5 probability of being low/

moderate (interval 1) and also a 0.5 probability of being

high/extreme (interval 2). In the first interval, the sampling

density is taken proportional to the original density func-

tion, f(x). In the second interval, the sampling density is

taken uniform. In formula:

h3 xð Þ ¼

0:5f ðxÞ

F x2ð Þ � F x1ð Þ
; x 2 x1; x2½ �

0:5

x3 � x2
; x 2 x2; x3½ �

8

>

>

<

>

>

:

ð12Þ

This sampling strategy for sea water levels is only

applied for event type (i), i.e. events that represent annual

maximum discharges in combination with a coinciding sea

water level. Figure 4 shows the results for sampling strat-

egy 5, which uses function h3. For river dominated loca-

tions (id[ 100) the standard deviations are now all below

0.05 m. This is a significant reduction in comparison with

sampling strategy 4, while the bias remains in the same

order of magnitude.

Unfortunately, the new sampling strategy caused an

increase in the estimate of the 10,000 year water level for

some locations in the tidal area (location id\ 100 in the

lower right subplot of Fig. 4. The estimated 10,000 year

water level with sampling strategy 5 is around 0.1 m for

these locations. For these locations, extremely high water

levels are caused by a combination of high sea water levels

and a malfunctioning barrier. The probability of failure to

close upon request for this barrier is 1 in 100, so a mal-

functioning barrier only occurs in 1 % of the samples on

average. The fact that in the Monte Carlo simulations there

are only a few samples of this type of event is the main

reason why the standard deviation of the Monte Carlo

estimate is relatively high for sea water level dominated

locations: one or two samples more (or less) may lead to

significant changes in the estimated T-year water levels.

The obvious way to reduce this effect is to increase the

probability of sampling events in which the barrier fails to

close upon request. Since the random variable ‘barrier’ has
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only two states (functioning or malfunctioning), the

importance sampling distribution is binomial:

h4ðxÞ ¼
p1 ;malfunctioning barrier

1� p1 ; functioning barrier

�

ð13Þ

In sampling strategy 6 (ISS6), the probability of a mal-

functioning barrier, p1, was chosen to be 10 %, whereas the

actual probability is estimated to be 1 %. Of course, this

increase with a factor 10 needs to be corrected for in the

usual manner in the Monte Carlo estimator. For samples in

which the barrier malfunctions, the correction factor is equal

to 1/10, because the sampling probability of a malfunc-

tioning barrier was increased with a factor 10. For samples

in which the barrier closes upon request, the correction

factor is equal to 99/90, because the sampling probability of

a functioning barrier was decreased from 99 to 90 %.

Figure 4 compares the results for sampling strategies 5

and 6. The objective of reducing the remaining ‘‘high’’

standard deviations has clearly been successful. With

sampling strategy 6, the standard deviations in the esti-

mated 100, 1,000 and 10,000 year water levels are all less

than 0.06 m. Further fine-tuning of the sampling strategy

did not lead to significant further improvements since an

improvement for one location is almost automatically at the

expense of the quality of the results for other locations.

Sampling strategy 6 is therefore chosen as the preferred

option in the framework for societal flood risk analysis.

Figure 4 also compares the results of sampling strategy 6

for 1,000 simulated years with the crude Monte Carlo

results with 100,000 simulated years. It can be seen that for

the 100-year water level the crude Monte Carlo method

performs better due to its abundance in the applied number

of samples. However, for the 10,000-year water level the

importance sampling strategy clearly outperforms the

crude Monte Carlo approach, because the bias and standard

deviation are lower for all locations. For many locations,

Fig. 4 Bias (left) and standard

deviation (right) for estimated

water levels with return periods

of 100 years (top panel),

1,000 years (centre panel) and

10,000 years (lower panel);

comparison of results of

importance sampling strategies

5 and 6 with 1,000 simulated

years and crude MC with

100,000 simulated years
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the crude Monte Carlo method results in a standard devi-

ation of more than 0.1 m, whereas with importance sam-

pling this standard deviation is less than 0.06 m for all

locations and all considered T-year water levels. So in spite

of the fact that for the Crude Monte Carlo method 100

times more samples were used, the importance sampling

method provides overall more accurate estimates T-year

water levels. This clearly shows the added value of

importance sampling: with 100 times lower computation

time, more accurate results can be obtained.

6 Conclusions

This paper described the benefits of the application of

importance sampling in a probabilistic framework for

societal flood risk analysis in the Rhine–Meuse delta in the

Netherlands. The choice of efficient importance sampling

techniques in a delta like the Rhine–Meuse delta is more

challenging than for non-tidal rivers where only discharges

are relevant, because the relative influence of the forcing

factors like river discharge and sea water level differ from

location to location. As a consequence, sampling methods

that are efficient and accurate for one location may be very

inefficient for other locations or, worse, may introduce

errors in computed design water levels. Several sampling

strategies were tested and results were compared in terms

of bias and standard deviation in the probability estimate.

The analysis resulted in an efficient sampling strategy

which reduces the required model simulation time by a

factor 100 compared to crude Monte Carlo simulation,

while at the same time the probability estimates of the

relevant extreme water levels are more accurate for all

locations considered in the area. This is a very valuable

result, as it reduces the required computation times of the

probabilistic framework to acceptable quantities, while at

the same time the output is more accurate.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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